KEY - CHEMISTRY pH PRACTICE (\#2)

1) How acidic or basic a substance is... (answers vary)
2) 14
3) 0
4) 7
5) A pH of 6.7 is a weak acid. It is less than 7 , but barely.
6) A pH of 13.1 a strong base. It is almost 14 .
7) A solution has $\left[\mathrm{OH}^{-}\right]$of $1.00 \times 10^{-9} \mathrm{M}$.
a) $\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-5} \mathrm{M}$
b) $\mathrm{pH}=5$
c) $\mathrm{pOH}=9$
d) $\mathrm{ACID}(\mathrm{pH}=5)$
8) A solution has $\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-11} \mathrm{M}$.
a) $\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-3} \mathrm{M}$
b) $\mathrm{pOH}=3$
c) $\mathrm{pH}=11$
d) $\operatorname{BASE}(\mathrm{pH}=11)$
9) A solution has a pOH of 8 .
a) $\mathrm{pH}=6$
b) $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-6} \mathrm{M}$
c) $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-8} \mathrm{M}$
d) $\mathrm{ACID}(\mathrm{pH}=6)$
10) A solution has a $\mathrm{pH}=7$.
a) $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$
b) $\mathrm{pOH}=7$
c) $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}$
d) NEUTRAL ($\mathrm{pH}=7$)
(\#11-20 for Chem IH only)
11) A solution has $\left[\mathrm{H}^{+}\right]=3.39 \times 10^{-7} \mathrm{M}$.
a) $\left[\mathrm{OH}^{-}\right]=2.95 \times 10^{-8} \mathrm{M}$
b) $\mathrm{pOH}=7.53$
c) $\mathrm{pH}=6.47$
d) $\mathrm{ACID}(\mathrm{pH}<7)$
12) A solution has a pOH of 8.55 .
a) $\mathrm{pH}=5.45$
b) $[\mathrm{H}+]=3.55 \times 10^{-6} \mathrm{M}$
c) $\left[\mathrm{OH}^{-}\right]=2.82 \times 10^{-9} \mathrm{M}$
d) $\mathrm{ACID}(\mathrm{pH}<7)$
13) A solution has $\left[\mathrm{OH}^{-}\right]$of $4.44 \times 10^{-6} \mathrm{M}$.
a) $\left[\mathrm{H}^{+}\right]=2.24 \times 10^{-9} \mathrm{M}$
b) $\mathrm{pH}=8.65$
c) $\mathrm{pOH}=5.35$
d) $\operatorname{BASE}(\mathrm{pH}>7)$
14) A solution has a $\mathrm{pH}=12.76$.
a) $\mathrm{pOH}=1.24$
b) $\left[\mathrm{H}^{+}\right]=1.74 \times 10^{-13} \mathrm{M}$
c) $[\mathrm{OH}-]=5.75 \times 10^{-2} \mathrm{M}$
d) $\operatorname{BASE}(\mathrm{pH}>7)$
15) A solution has a pOH of 10.75 .
a) $\mathrm{pH}=3.25$
b) $[\mathrm{H}+]=5.62 \times 10^{-4} \mathrm{M}$
c) $\left[\mathrm{OH}^{-}\right]=1.78 \times 10^{-11} \mathrm{M}$
d) $\mathrm{ACID}(\mathrm{pH}<7)$
16) A solution has $\left[\mathrm{H}^{+}\right]=5.12 \times 10^{-8} \mathrm{M}$.
a) $\left[\mathrm{OH}^{-}\right]=1.95 \times 10^{-7} \mathrm{M}$
b) $\mathrm{pOH}=6.71$
c) $\mathrm{pH}=7.29$
d) $\operatorname{BASE}(\mathrm{pH}>7)$
17) A pH change from $8 \rightarrow 12$ is 4 increments on the scale. $\mathbf{1 0}^{\mathbf{4}}=\mathbf{1 0 , 0 0 0}$ times more basic
18) A pH change from $5 \rightarrow 3$ is 2 increments on the scale.
$\mathbf{1 0}^{\mathbf{2}}=\mathbf{1 0 0}$ times more acidic
19) A pH change from $9 \rightarrow 6$ is 3 increments on the scale.
$\mathbf{1 0}^{\mathbf{3}}=\mathbf{1 0 0 0}$ times less basic
20) A pH change from $0 \rightarrow 1$ is 1 increment on the scale. $\mathbf{1 0}^{\mathbf{1}}=\mathbf{1 0}$ times less acidic
